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a b s t r a c t

A two-dimensional model of the flexure of a thin plate, reinforced with periodic families of separated thin
rods, symmetrical about the middle plane, is constructed. Since the rods only interact through the pliable
matrix material, the algorithm for constructing the asymptotics is essentially different from the classical
procedure in the theory of composite plates and leads to new results. Explicit formulae are obtained for
the coefficients of the fourth order differential equation which arises.

© 2010 Elsevier Ltd. All rights reserved.

1. A composite plate

A plate of thickness 2h > 0 is specified by the relation

(1.1)

in the Cartesian system of coordinates x = (y, z). Here, � is the domain in a plane bounded by a simple smooth closed contour ∂�. We make
the parameter h and the coordinates y1, y2 and z dimensionless by scaling, and we separate out the layers

∑(k)
h (k = 0, ±1, ±2, . . . , ±K)

which are arranged symmetrically about the middle plane of the plate

When a0 > 0, the number of layers is odd and, when a0 = 0, it is even since the layer
∑(0)

h is missing. The plate (1.1) is pierced by periodic

families �k
h

of circular rods �kj
h

, (j = 0, ±1, ±2, . . .±J) with axes in the middle plane of a layer
∑(k)

h at a distance of hsk from one another

(Fig. 1). The rods in the upper layer
∑(K)

h are parallel to the y1 axis and the rods in the layer
∑(k)

h are at an angle �k to this axis and, in

particular, �K = 0. We now introduce the Cartesian systems of coordinates xk = (yk
1, yk

2, zk) with the origin x = x(k)
0 on the axis of the rod

�k0
h

such that the yk
1 axis is parallel to the z axis and the zk axis is parallel to the axes of the rods �kj

h
. The transition from system x to the

system xk is achieved using the orthogonal transformation

(1.2)
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Fig. 1.

The systems of rods and the matrix-filler are defined by the formulae

(1.3)

The isotropic material of the rods ˘kj
h

has the Lamé constants �k and �k and the matrix material ˜̋
h has the Lamé constants � = h�̃

and M = h�̃, where h is the same dimensionless parameter as in formula (1.1) and the quantities �k, �k, �̃ and �̃ are comparable in their
order of magnitude. The design which has been described is a mathematical model of a composite plate consisting of isotropic rigid fibres
�kj

h
and a matrix �̃h made of a weaker but also homogeneous and isotropic elastic material. Hence, the cylindrical stiffness O(hh3) of the

plate �̃h is comparable in order of magnitude with the flexural stiffness O(h4) of each isolated rod �kj which, in totality, take the main
load on themselves, while the matrix material serves as a filler.

Composite materials of this kind are encountered in modern engineering,1 and the absence of direct bonds between the fibres is
explained by the technological preparation process or by attempts to reduce the price of the product. In reinforced concrete structures,
the reinforcement, consisting of families of rigid rods, is conventionally welded at the contact points and, in this sense, the rods are found
to be joined, unlike the separated rods studied in this paper. Standard asymptotic structures (see for example, Ref. 2, Ch. 8, Ref. 3, Ch. 6,
etc.) are suitable, in the case of families of connected rods, for the approximate description of the stress-strain state of a reinforced plate,
and the derived and substantiated asymptotic formulae show that systems of rods that have been soldered into a united mesh absorb the
main part of the load, while the role of the filler, the matrix, is of little importance and barely appears in the algorithm for the constructing
of the asymptotics. If, however, the rods are separated, that is, they do not touch but are connected into a united whole solely by the filler,
the standard asymptotic procedures do not work, the role of the filler increases considerably and the problem requires a new modified
asymptotic analysis. We emphasize that the contact between the rods and the matrix material is assumed to be ideal and questions of
fracture (peeling) are not touched upon.

The interaction of the rods exclusively through the soft matrix has several consequences. To begin with, for natural reasons a composite
plate is weakly resistant to shear loads in the z = 0 plane, which is reflected in the absence of ellipticity of the system of equations for the
plane stress state of the plate (Section 7). At the same time, in a situation of “pure” flexure of a plate considered here,with a supplementary
geometric condition (Section 2), the limiting fourth order equation retains its ellipticity and the Dirichlet boundary value problem retains
its unique solvability (Section 5).

The second feature of a composite plate with separated rods is the insertion of a small parameter into the model problem arising for the
periodicity cell. As a result, it is necessary to modify the procedure for constructing of the asymptotic forms (Section 3) and the formulae
for the coefficients of the limiting differential operator, both the general (Section 5) and the specific (Section 6), differ from the known
coefficients in the case of a plate reinforced by a network of connected rods.

In the case considered

where the thickness H and the length L are the characteristic overall dimensions of the plate and the rods, and the above mentioned
cylindrical and flexural stiffnesses acquire the same order of magnitude subject to the condition that M(H/L)3 ≈ �(H/L)4, that is, L ≈ H�/M.
The last relation prescribes the range of variation in the longitudinal dimensions of the plate and the lengths of the rods over which the
asymptotic theory that has been developed “works”. If it is turns out M(H/L)3 � �(H/L)4 and L � H�/M, then the standard asymptotic
constructions of the theory of averaging are suitable.

2. Mathematical formulation of the problem

The displacement vector u satisfies the equilibrium equations

(2.1)

(2.2)

Here, �̃ and uk,j are the contractions of the vector u in �̃h and �kj
h

respectively, f is the mass force and e(k) is the unit vector along the xk

axis. The lateral surface �h = ∂ � ×(− h, h) of the plate �h is rigidly changed:

(2.3)
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The external forces

(2.4)

are applied to the bottom of the plate, where �ij are the Cartesian components of the stress tensor

(2.5)

Conditions of ideal contact

(2.6)

are imposed on the sides of the rods in contact with the matrix.
We will denote a scalar product in the scalar or vector Lebesgue space L2(�) by (,)� and the space of Sobolev functions satisfying condition

(2.3) by
◦

H1(�h; �h). The variational formulation of problem (2.1)–(2.4), (2.6), corresponding to the problem of the minimizing of the strain
potential energy, has the form.4,5

(2.7)

Henceforth, summation is carried out over the repeated indices p, q = 1, 2, 3. When � = u, the left-hand side of the integral identity (2.7)
is twice the elastic energy of the plate.

We will assume that, for at least two families �jk
h

, the axes of the rods are formed by crossing lines, that is, �l /= 0 for some l /= K. We
also assume that the plate has a periodic structure, which means that it is possible to choose a general periodicity cell with dimensions
O(h). We will now formulate the corresponding geometrical constraints. We introduce the set �1 of numbers k = 0, 1, ..., K and k /= l such
that �k /= 0, �k /= 	, and, also, the set �2 of numbers k = 0. 1, ...., K - 1 such that �k /= ±	/2. Suppose

We will require that all of the numbers Si
k
/Si(i = 1, 2, k ∈ i) turn out to be simple fractions m(i)

k
/n(i)

k
and determine the cell Qh, denoting

the least common multiple of the numbers m(k)
i

, ki by Pi. We cover the plane of the plate �h with a mesh of rectangles of size b1h × b2h,
where bi = PiSi and construct parallelepipeds of dimensions b1h × b2h × 2h, the family of which covers the whole plate �h. Each of the
parallelepipeds includes different and identically arranged parts G(k,j)

h
of the rods �kj

h
. Here, a periodicity cell Qh can contain several

fragments of the same rod from the same set �k
h

(the periodicity cell of the system shown in Fig. 2 contains two unequal fragments of the
rods from the system �2

h
and four congruent fragments of the equal rods of the system �1

h
). Note that, in many cases, for a small number

K of directions of reinforcement of the plate, checking that the conditions for the existence of a periodicity cell are satisfied is elementary
(see Section 6).

We will now consider the pure flexure of a composite plate which is ensured by the following geometric and physical conditions. First,
the families �±k

h
contain identical and undirectional rods, that is,

Second, the materials of the rods �kj
h

and �−kj
h

are identical. In this case, the vector

satisfies the same problem as the vector u((y, z), and this means, in view of the uniqueness of the solution, that the following equalities
hold.

Fig. 2.
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3. Leading asymptotic terms

For the displacement vector, we take the truncated asymptotic expansion of the theory of thin plates (see, for example, Ref. 3, Ch. 4)

(3.1)

Here, 
 = h−1z is the extended transverse coordinate (the fast variable) and the function w is the mean deflection of the plate.
We rewrite formula (3.1) in the coordinates xk attached to the rod �kj

h
and refine it, adding the next asymptotic term in order of

magnitude derived from the theory of rods (Ref. 3, Ch. 3). It is not required in the expansion of the solution for the plate on account of the
smallness of the Lamé coefficients � = h�̃ and M = h�̃ of the filler. We obtain

(3.2)

Here, wk(yk
2, zk) = w(y), 	k = h−1yk, xk

0 is a point on the axis of a rod of the family �k
h

and ek
(i) and ek

(3) are unit vectors of the yk
i

and zk

axes.
We introduce the extended coordinates in the matrix and in the rod, connected by the relation

Substituting the sums (3.2) and the contact conditions (2.6) into Eq. (2.1), we choose the coefficients of like powers of the small parameter
h. As a result, we obtain the problem for determinings the term U0,k which satisfies the periodicity conditions with respect to the variable
�k in the cell Q1 = b1 × b2. The problem admits of an explicit solution

(3.3)

Here Wk and Vk = (Vk
1 , Vk

2 ) are the solutions of two model (antiplane and plane) problems in the circle Bk of radius Rk

(3.4)

(3.5)

�pq(Vk;	k) are the stresses calculated at the point �k in the extended coordinates along the displacement vector Vk and �k(�k) is the
outward normal to the circle ∂Bk.

4. Taking the limit in the energy functional

We will derive an integral identity in the two-dimensional model of a composite plate and define the trial function 
h by a formula
which imitates asymptotic representation (3.2)

(4.1)

(4.2)

(4.3)

Here, the notation for the functions in the local system of coordinates has been taken from Section 2. Moreover, the field (4.3) is
continued smoothly in an arbitrary manner from the rod into the matrix. By 
 ∈ C∞

c (ω), we mean an infinitely differentiable function with
a compact carrier in the domain � and, moreover, 
k(yk

2, zk) = 
(y). We calculate the leading term of the asymptotic form of the energy
integral �pq(Uh), �pq(
h)�h

when h → 0; here

(4.4)

The summation over the indices k and j is carried out over all the rods in the composite plate.



S.A. Nazarov et al. / Journal of Applied Mathematics and Mechanics 74 (2010) 313–322 317

We use the notation

According to formula 91.6) and definition (2.5) of the stress tensor, we find

(4.5)

Henceforth, dots replace terms of higher orders of smallness.
The components of the stress tensor are only of an order of magnitude h−1 in the case of the rods �kj

h
and, for the matrix, they are

uniformly bounded. Hence, only the deformations of the rods are subsequently necessary

(4.6)
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Using expressions (4.5) and (4.6), we obtain

(4.7)

The summation is carried out over all systems of rods and

(4.8)

We now write the quantity (4.8) in the form

Estimation of the residue in the asymptotic formula (4.7) is ensured by the Korn inequality for a composite plate with a strictly periodic
structure, derived using the standard scheme.8

5. The limiting problem of the bending of a plate

The integral identity for the deflection w has the form

(5.1)

◦
H

2
(ω) is the space of Sobolev functions w satisfying the conditions

(5.2)

We now calculate the components of the left-hand side of the equality (5.1). By to formulae (4.3) and (3.3), we have

(5.3)

Here
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and, for brevity, the argument �k of the derivatives of the functions Wk, Vk
1 and Vk

2 is not shown.
The associated harmonic function Uk

0 for the solution Wk of problem (3.4) satisfies the Cauchy–Riemann equations and, correspondingly,
can be represented as follows:

(5.4)

By virtue of the Cauchy–Riemann equations (5.4) and the boundary condition in problem (3.4), the tangential derivative ∂Uk/∂ s is equal
to zero. Consequently, the constant Ck can be chosen so that

The torsional stiffness of the circular section Bk

is equal to �R4
k
/2.6 Hence,

(5.5)

The solution Vk of problem (3.4) satisfies the relations

Hence, by Hooke’s law, we have

(5.6)

Formulae (5.1), (5.3), (5.5) and (5.6) imply the equation

(5.7)

Each of the terms on the right-hand side of equality (5.3), forming the energy quadratic form on the left-hand side of the integral
identity (5.1), is positive but it is not a positive definite form, since the diagonal matrix Mk has a null element on the principal diagonal.
Hence, each of the operators Lk constituting the operator L in Eq. (5.7) is found to be formally positive but not elliptic. This is the decisive
difference between plates reinforced with connected families of rods and plates reinforced with separated families of rods. In the case of
reinforcement with a network of connected rods (the welded reinforcement in reinforced concrete, for example), the averaging procedure
(Ref. 2, Ch. 8 and Ref. 3, Ch 6) at once gives an elliptic operator which enables us to find the unique solution of the problem. In the case
of reinforcement with families of separated rods, each family �jk

h
generates an operator Lk. It is unclear, however, whether the operator L

is elliptic. The condition of crossing lines which has been introduced ensures ellipticity but, if the axes of all the rods are parallel and the
condition is violated, then, as previously, the operator L =

∑
Lk is devoid of the derivative ∂4/∂y4

2. It is not elliptic and the averaged problem
will not be uniquely solvable. This fact reflects a simple observation: in the case of parallel rods, the bending moment is mainly absorbed
by the filler which has a relatively small Young’s modulus.
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We will now verify the ellipticity of the operator with the additional conditions that the axes of the rods cross. The matrix M′k =
diag

{
Mk

2, Mk
3

}
is positive and, consequently, the relation

(5.8)

holds for any column (�j
1, 
j

2) (� is the transposition sign). We put M = M′1 + M′2 + . . . and show that the equality D
MD = 0 is only possible
when � = (�1, �2) = 0. We select the index l for which �1 /= 0 and represent the column � in the form � = c1e(1) + c0e(l), where c0 and c1 are
constants and e(1) = (1, 0) and e(l) = (cos�l, sin�l) are unit vectors of the axes of the rods. According to inequality (5.8), the relation

is satisfied. As a result, we have c1 = c0 = 0 and � = 0, as was required.
So, the quadratic form E(w,
;�) is positive definite and this means that it can be designated by a scalar product in the Sobolev space

◦
H

2
(ω). Riesz’s theorem on the representation of a linear functional in Hilbert space establishes the unique solvability of variational problem

(5.1) and the available results7 enable one to convince oneself of the additional smoothness of the solution.

Proposition. For any left-hand side F ∈ L2(ω), problem (5.1) has a unique solution w ∈ H4(�) ∩ ◦
H

2
(�) and the estimate

is correct.

6. Examples

Suppose there are two pairs of symmetrically arranged mutually perpendicular systems of rods (Fig. 3, the periodicity cell is shown
shaded) with identical properties, that is, �k = �, �k = �, Rk = R The resulting equation (5.7) then takes the form

where si is a step along the rectangular mesh in the direction of the yi axis. The same operator arises in the case when there are three
families of mutually perpendicular system of rods and the radius of the central rods �0j

h
is equal to 2R.

We will now assume that a plate is reinforced with three pairs of families of rods with identical properties at an angle of 60◦ to one
another (the scheme for the reinforcement of the plate is shown in Fig. 4) and that the distance between the neighbouring unidirectional
rods is equal to s. Suppose the rods of the system �3

h
are directed along the y1 axis. Searching for the dimensions of the periodicity cell in

accordance with the algorithm mentioned in Section 2, we obtain

We now calculate the component of the differential operator in formula (5.7), taking account of relation (1.6) and the equality

Fig. 3.

Fig. 4.
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We have

Consequently, the resulting operator (5.7) is determined from the formula

(6.1)

The cylindrical stiffness of the homogeneous plate

differs in form from the factor in front of the biharmonic operator �2 in formula (6.1).
In order to describe the bending of a plate reinforced with two perpendicular families of separated rods, some researchers use an

equation with the operator

(6.2)

The method of “derivation” of the averaged equation serves as the reason for the absence of the mixed derivative ∂4/∂y2
1∂y2

2 in the
operator (6.2): the ordinary fourth order differential operators describing the bending of the individual rods from the two families are
added together. The asymptotic analysis presented in the preceding sections shows that, in the resulting operator

the coefficient C cannot degenerate into zero, that is, the operator (6.2) cannot appear.

7. The Anisotropic Korn inequality and proof of the asymptotic form

The anisotropic weighted Korn inequality (see for example, Ref. 8) is required to prove the asymptotic formulae which have been
obtained. If the formulation of the problem in Section 1 is changed and it is assumed that the rods are connected and they form a periodic
lattice, then the inequality.9

(7.1)

holds. Here,

�̃h is the matrix-filler (1.3) and the weighting factor �h(y) is of the order of h in the neighbourhood of the surface �h of the plate �h and of
the order of h0 = 1 far from �h. The quantity on the left-hand side of inequality (7.1) is similar to the elastic energy of a composite plate and
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the constant C is independent of both the displacement field u and the parameter h ∈ (0,1). The Korn inequality (7.1) is asymptotically exact
in the sense that it is impossible to increase the order of the factor on one of the terms on its left-hand side with respect to the parameter
h−1. In the case of separated rods (we have now returned to the initial formulation of the problem) the unit factors on |u1,2|2, |u2,1|2 and
�−2

h
when �−2

h
|uj|2 decrease to h and h�−2

h
respectively (see Ref. 8). However, while this is unimportant at first glance, the change turns

out to be decisive: the vector u(x)=(y2,−y1,0) of rotation about the z axis imparts the order of h to the integral on the left-hand side of the
Korn inequality in the first case and the order of h2 in the second case. General methods10 enable us to derive from this fact that there is
no ellipticity in the case of the averaged system of equations of the theory of elasticity describing the plane stressed state of the reinforced
plate considered.

A relaxation of the weighted Korn inequality does not affect the bending component u3: in the case when �k /= 0 even if, for one of
the rods, the factors on |u1,2|2,|u2,1|2 are the same as in the Korn inequality (7.1). The limiting operator L in the pure bending problem is
therefore elliptic and problem (5.7), (5.2) is uniquely solvable.

In the case when �1 = . . . �K = 0, all the factors on |u1,2|2 and |u2,1|2 become equal to h, and the operator (5.7) loses its ellipticity:

This is explained by the fact that a composite plate is weakly resistant to loads with a non-zero moment with respect to the y1 axis.
If the degree of contrast in the elastic properties of a composite plate is not taken care of and averaging is carried out using a classical
scheme, then elliptic operators arise as a result, but their coefficients turn out to depend on a small parameter and the operators will
be degenerate11 when h → +0 and, correspondingly, the relaxed differential properties of the solutions12 do not enable us to prove the
incorrectly performed asymptotic analysis.

An estimate of the closeness of the true and approximate solution (4.4) of the three-dimensional problem in the theory of elasticity is
obtained using the standard scheme (see, for example, Ref. 3, Ch. 6) on the basis of the asymptotically exact Korn inequality for a plate
reinforced with separated rods which is derived using previously developed techniques.8
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